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Background. As articular cartilage is unable to repair itself, there is a tremendous clin-
ical need for a tissue engineered replacement tissue. Current tissue engineering efforts
using the self-assembly process have demonstrated promising results, but the biome-
chanical properties remain at roughly 50% of native tissue. Methodology/Principal
Findings. The objective of this study was to determine the feasibility of using exogenous
crosslinking agents to enhance the biomechanical properties of a scaffoldless cartilage tis-
sue engineering approach. Four crosslinking agents (glutaraldehyde, ribose, genipin, and
methylglyoxal) were applied each at a single concentration and single application time. It
was determined that ribose application resulted in a significant 69% increase in Young’s
modulus, a significant 47% increase in ultimate tensile strength, as well as a trend
toward a significant increase in aggregate modulus. Additionally, methylglyoxal appli-
cation resulted in a significant 58% increase in Young’s modulus. No treatments altered
the biochemical content of the tissue. Conclusions/Significance. To our knowledge,
this is the first study to examine the use of exogenous crosslinking agents on any tissue
formed using a scaffoldless tissue engineering approach. In particular, this study demon-
strates that a one-time treatment with crosslinking agents can be employed effectively to
enhance the biomechanical properties of tissue engineered articular cartilage. The results
are exciting, as they demonstrate the feasibility of using exogenous crosslinking agents to
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enhance the biomechanical properties without the need for increased glycosaminoglycan
(GAG) and collagen content.

Keywords: Cartilage; tissue engineering; biomechanical testing; crosslinking.

1. Introduction

Following injury, articular cartilage is unable to repair itself, thus resulting in
its replacement with mechanically inferior fibrocartilage,1 which will eventually
be degraded over time. As such, there is a tremendous clinical need for a viable
replacement tissue, and tissue engineering appears to be a promising avenue for
replacement tissue formation.

Our laboratory has had success with a scaffoldless approach to articular cartilage
tissue engineering, called the self-assembly process.2 For instance, we have produced
engineered constructs with glycosaminoglycans (GAGs) and collagen content on par
with native tissue following stimulation with modalities including hydrostatic pres-
sure, growth factor application, and chondroitinase ABC treatment.3–7 However,
the tissue’s biomechanical properties, particularly the tensile properties, remained
less than half those of native tissue. Therefore, additional treatment modalities will
be required to obtain biomechanical properties on par with native tissue.

Several studies have examined the effects of collagen crosslinking agents on
biomechanical properties and have demonstrated promising results. For instance,
glutaraldehyde has been widely used as a protein crosslinking agent for tissue fixa-
tion as well as stabilization, and has been successfully used to enhance the biome-
chanical properties of knee meniscus explants at low concentrations.8

An alternative crosslinking paradigm is the use of glycation, in which collagen
amine groups are crosslinked with reducing sugars, leading to advanced glycation
end products (AGEs).9 Although the presence of AGEs is generally a sign of aging
that is detrimental to diabetics,10,11 glycation has been shown to be an interesting
approach for enhancing tissue functional properties with minimal toxicity.12 Based
on a review of the literature,8,12–16 ribose, genipin, and methylglyoxal were selected
as glycation crosslinkers, and were compared to glutaraldehyde. Each of the four
crosslinking agents was applied at a single concentration selected from the literature.
Additionally, a single application time of 3.5 h with a 0.5-h wash was selected as
4 h was shown to be the maximum time of construct incubation prior to the loss of
GAG.17

Though several studies have assessed the effects of crosslinking agents on explant
tissue, to the best of our knowledge, no study has assessed the effects of crosslinking
agents on tissue formed in a scaffoldless tissue engineering approach. Therefore, the
objective of this study was to determine the feasibility of using exogenous crosslink-
ing agents to enhance biomechanical properties in a scaffoldless cartilage tissue
engineering approach. As such, the effects of the crosslinking agents on construct
compressive and tensile biomechanical properties, GAG and collagen content, and
cellularity, were assessed following tissue formation during a 4-week culture period.
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It was hypothesized that the one-time application of a crosslinking agent would
enhance the biomechanical properties of the engineered cartilage tissue without
affecting the biochemical properties of the tissue.

2. Materials and Methods

2.1. Chondrocyte isolation and seeding

Articular cartilage was obtained from the distal femur of week-old male calves18–20

(Research 87, Boston, MA) after slaughter, and chondrocytes were isolated after tis-
sue digestion with collagenase type 2 (Worthington, Lakewood, NJ). To normalize
animal variability, each leg was obtained from a different animal, and cells from all
legs were combined together to create a mixture of chondrocytes; a mixture of cells
from six legs was used in the study. Cell number was measured on a hemocytometer,
and a trypan blue exclusion test indicated that viability remained >85%. Chondro-
cytes were frozen in culture medium supplemented with 20% FBS (Biowhittaker,
Walkersville, MD) and 10% DMSO at −80◦C for one week prior to use. After
thawing, viability was greater than 90%. A stainless steel mold consisting of 5mm
diameter × 10mm long cylindrical prongs was placed into a row of a 48-well plate.
For construction of each agarose well, sterile and molten 2% agarose was added to
wells containing the die. The agarose solidified at room temperature for 60min and
the mold was then removed from the agarose. Culture medium was exchanged twice
to completely saturate the agarose well by the time of cell seeding. The medium
was DMEM with 4.5 g/l-glucose and l-glutamine (Biowhittaker), 100 nM dexam-
ethasone (Sigma, St. Louis, MO), 1% penicillin/streptomycin/fungizone (P/S/F)
(Biowhittaker), 1% ITS+ (BD Scientific, Franklin Lakes, NJ), 50µg/ml ascorbate-
2-phosphate, 40µg/ml l-proline, and 100µg/ml sodium pyruvate (Fisher Scientific,
Pittsburgh, PA). For each construct, 5.5× 106 cells were added in 100µl of culture
medium. Constructs assembled within 24 h in the agarose wells and were cultured
in the same well until t = 10 days, after which they were cultured unconfined for
the remainder of the study, as described previously;21 t = 0 was defined as 24 h
after seeding.

2.2. Crosslinking treatment

At t = 4 weeks, self-assembled constructs (n = 6−7/group) were removed from cul-
ture and exposed to one of four crosslinking treatments, for 3.5 h. The crosslinking
treatments, all obtained from Sigma, included:

(1) 0.2% glutaraldehyde,
(2) 0.33% genipin,
(3) 30mM ribose, and
(4) 100mM methylglyoxal.
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All treatments included 0.02% EDTA, and 1% P/S/F, in PBS. A control group was
exposed to this same solution for 3.5 h without a crosslinking agent added. These
treatments were applied at 37◦C with agitation. Following the 3.5 h crosslinking
treatment, the constructs were washed for 30min in PBS at 37◦C with agitation,
and then all construct assessments were performed.

2.3. Histology

Following freezing, samples were sectioned at 14 µm. To determine construct GAG
distribution, a safranin-O/fast green stain was used,22,23 and to examine collagen
content, a picrosirius-red stain was employed.

2.4. Quantitative biochemistry

Samples were frozen overnight and lyophilized for 48 h. This was followed by diges-
tion with 125µg/ml papain (Sigma) in 50mM phosphate buffer (pH = 6.5) contain-
ing 2mM N -acetyl cysteine (Sigma) and 2 mM EDTA (Sigma) at 65◦C overnight.
A Picogreen r© Cell Proliferation Assay Kit (Molecular Probes) was used to measure
total DNA content. GAG content was determined using the Blyscan Glycosamino-
glycan Assay kit (Biocolor), based on 1,9-dimethylmethylene blue binding.24,25

Finally, after hydrolysis with 2-N NaOH for 20min at 110◦C, total collagen content
was quantified using a chloramine-T hydroxyproline assay.26

2.5. Indentation testing

Samples were assessed with an indentation apparatus, as previously described.27 A
0.7 g (0.007 N) mass was applied with a 1-mm flat-ended porous indenter tip, and
specimens crept until equilibrium, as described elsewhere.2 Strains generally ranged
from 2 to 5%. Preliminary estimations of the aggregate modulus of the samples were
obtained using the analytical solution for the axisymmetric Boussinesq problem
with Papkovich potential functions.28,29 The sample biomechanical properties were
then calculated using the linear biphasic theory.30

2.6. Tensile testing

A uniaxial materials testing system (Instron Model 5565, Canton, MA) was used to
measure tensile properties with a 50-N load cell, as described previously.31 Briefly,
samples were cut into a dog-bone shape with a 1-mm-long gauge length. Sam-
ples were glued to paper tabs with cyanoacrylate glue outside of the gauge length.
The 1-mm-long sections were pulled at a 1% constant strain rate, and samples
broke within the gauge length. Stress–strain curves were generated from the load–
displacement curve and the cross-sectional area of each sample, and Young’s mod-
ulus and ultimate tensile strength were calculated from each stress–strain curve.
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2.7. Statistical analysis

All biomechanical and biochemical assessments were made using n = 6−7. To
compare among treatment groups, a single factor ANOVA was used, and a Tukey’s
HSD post-hoc test was used when warranted. Significance was defined as p < 0.05.

3. Results

3.1. Gross appearance and histology

Construct diameter was approximately 6 mm in all studies. The construct wet
weights for the control, glutaraldehyde, genipin, ribose, and methylglyoxal treated
groups were 21.4± 1.5, 23.8± 1.2, 22.6± 1.3, 20.6± 1.5, and 21.8± 2.1mg, respec-
tively; no groups were significantly different from control. The construct thicknesses
for the control, glutaraldehyde, genipin, ribose, and methylglyoxal treated groups
were 0.79± 0.06, 0.98 ± 0.10, 0.91 ± 0.06, 0.79± 0.06, and 0.89 ± 0.07mm, respec-
tively. The thicknesses for the glutaraldehyde and genipin groups were significantly
higher than control. Figure 1 depicts the construct gross morphological and his-
tological properties of the tissue. All constructs stained positive for collagen and
GAG throughout their thickness.

3.2. Quantitative biochemistry

There were no differences among the treatment groups in cellularity, GAG content,
or collagen content. The cells/construct for the control, glutaraldehyde, genipin,
ribose, and methylglyoxal treated groups were 6.1 ± 0.8 × 106, 6.0 ± 0.5 × 106,
5.4±0.31×106, 5.7±0.4×106, and 6.1±0.6×106 cells, respectively. The GAG/WWs
for the control, glutaraldehyde, genipin, ribose, and methylglyoxal treated groups
were 8.2 ± 0.4, 8.1 ± 0.6, 8.8 ± 0.2, 8.3 ± 0.4, and 8.7 ± 0.5%, respectively. The
collagen/WW for the control, glutaraldehyde, genipin, ribose, and methylglyoxal
treated groups were 9.1±1.7, 8.7±1.0, 8.0±0.8, 8.4±1.4 and 7.6±1.1%, respectively.

3.3. Biomechanical evaluation

The effects of the various crosslinking treatments on construct tensile properties
are displayed in Fig. 2. Treatment with ribose resulted in a significant increase in
both Young’s modulus and ultimate tensile strength (p < 0.05), and treatment
with methylglyoxal resulted in a significant increase in construct Young’s modulus
(p < 0.05). The Young’s moduli for the control, glutaraldehyde, genipin, ribose,
and methylglyoxal treated groups were 682± 190, 955± 241, 878± 244, 1152± 263,
and 1082 ± 407kPa, respectively. The ultimate tensile strengths for the control,
glutaraldehyde-, genipin-, ribose-, and methylglyoxal-treated groups were 184± 44,
241 ± 38, 190 ± 54, 271 ± 52, and 213 ± 67 kPa, respectively.

The effects of the various crosslinking treatments on construct compressive
properties are displayed in Fig. 3. There was a trend toward enhanced aggregate
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(a) (c)

(b) (d)

Fig. 1. Gross morphological and histological properties representative of all self-assembled con-
structs (10x original magnification). (a) Construct gross morphology surface view (each bar is
1mm). (b) Construct gross morphology profile view (each bar is 1mm). (c) Picrosirius red stained
sections. (d) Safranin-O/fast green stained sections.

modulus with ribose treatment (p = 0.10). The aggregate moduli for the control,
glutaraldehyde-, genipin-, ribose-, and methylglyoxal-treated groups were 237± 80,
307 ± 77, 230 ± 54, 334 ± 96, and 286 ± 51 kPa, respectively. The Poisson’s ratios
ranged from 0.28 to 0.35, with no differences among the groups. The permeability
values for the control, glutaraldehyde-, genipin-, ribose-, and methylglyoxal-treated
groups were 7.5±2.6×10−13, 9.0±7.8×10−13, 1.6±0.6×10−12, 1.0±0.6×10−12,
and 1.8 ± 0.3 × 10−12 m4/Ns, with only methylglyoxal significantly different from
control (p < 0.05).

4. Discussion

This study examined the effects of four exogenous crosslinking treatments on self-
assembled tissue-engineered cartilage constructs. It was hypothesized that exoge-
nous crosslinking agents could be used to enhance the biomechanical properties of
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(a) (b)

Fig. 2. Tensile properties of self-assembled constructs. (a) Young’s modulus. (b) Ultimate tensile
strength. Exogenous application of ribose resulted in a significant increase in Young’s modulus
and ultimate tensile strength, and application of methylglyoxal resulted in a significant increase
in Young’s modulus. Columns and error bars represent means and standard deviations. Groups
denoted by different letters are significantly different (p < 0.05).

Fig. 3. Compressive stiffness of self-assembled constructs. Exogenous application of ribose resulted
in a trend toward a significant increase in aggregate modulus (p = 0.10). Columns and error bars
represent means and standard deviations.

cartilage constructs after a one-time treatment, without altering the biochemical or
histological composition of the tissue. To the best of our knowledge, no other study
has demonstrated enhanced biomechanical properties of tissue formed in a scaffold-
less tissue engineering approach, in this case self-assembled cartilage constructs,
from the application of exogenous crosslinking agents following culture.

Ribose and methylglyoxal were found to be the winners of the study in terms of
improving construct functionality, where functionality is defined by the construct
biomechanical properties. Treatment with ribose appeared to be the most benefi-
cial, as it led to a significant increase in construct tensile properties (69% increase
in Young’s modulus and 47% increase in ultimate tensile strength), as well as a
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trend toward a significant increase in construct aggregate modulus (41%). This
result correlates with the findings of prior studies, in which it was demonstrated
that ribose application to meniscal tissue32 or scaffolds14 significantly increased the
tissue’s biomechanical properties. Likewise, treatment with methylglyoxal resulted
in a significant increase (58%) in construct Young’s modulus, although no such
increase in construct aggregate modulus was identified. Similarly, Wagner et al.16

observed an increase in annulus fibrosus tensile stiffness following treatment with
methylglyoxal. The results of the present study can be attributed to the exogenous
application of the crosslinking agents, as no changes in collagen or GAG content
were demonstrated with either treatment. Although the objective of this study was
to examine the effects of exogenous crosslinking agents and construct functional
properties, future studies need to be conducted to examine and measure the resul-
tant collagen crosslinks in the tissue following treatment.

Unfortunately, treatment with both genipin and glutaraldehyde did not result in
significant changes in construct biomechanical properties, which differs from prior
studies in the literature involving the knee meniscus and intervertebral disc. For
instance, Hunter et al.8 demonstrated up to a 2.8-fold higher aggregate modulus
with 0.02% glutaraldehyde application to meniscal explants. Additionally, Chuang
et al.13 found up to a 151% increase in “low compressive stiffness modulus” and a
78% increase in Young’s modulus when applying 0.33% genipin to annulus fibro-
sus explants; however, it must be noted that genipin was applied for 48 h in this
study, as opposed to the 3.5 h in our study. Thus, it is possible that there is a
significant dependence on treatment concentration and application, and it is likely
that some of the crosslinking agents must be applied at higher concentrations or for
longer periods of time than were used in this study in order to enhance the biome-
chanical properties of the tissue. This is especially likely given the demonstrated
dose-dependent relationships of multiple crosslinking agents on tissue biomechanical
properties.8,15 However, there also appears to be a ceiling in applied concentration,
as ribose concentrations above 100mM inhibit collagen crosslinking in bovine nasal
cartilage.33 It is also possible that continued construct culture is required after
crosslinking treatment before an increase in biomechanical properties is found, as
was observed previously.34

In addition, the genipin and glutaraldehyde groups were significantly thicker
than the control groups, and these were the only groups that did not have a sig-
nificant increase in biomechanical properties following treatment, so it is possible
that their increased thickness hindered the effects of the crosslinking agents. How-
ever, this is unlikely as these groups were only approximately 10–20% thicker than
control, and all crosslinking treatments were applied for 3.5 h with agitation. Addi-
tionally, as indicated in the histological images, all constructs appeared uniform
microscopically throughout their thickness. Furthermore, construct thickness was
assessed after crosslinking, so it is possible that treatment with genipin and glu-
taraldehyde led to increased construct thickness immediately following treatment.
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A potential drawback of this approach is the in vivo translatability of the
approach used in the study. For instance, Speer et al.35 observed in vitro cytotoxicity
and a foreign body giant cell reaction in vivo due to leaching of glutaraldehyde from
the bioimplant at concentrations of only 3 ppm. Additionally, the failure of heart
valve allografts has been associated with calcification resulting from glutaralde-
hyde treatment.36 However, the use of glycation treatments mitigates some of these
detrimental effects. For instance, Girton et al.12 found that ribose treatments up
to 30mM did not lead to cytotoxicity, and did not result in tissue calcification fol-
lowing a two-week subcutaneous implantation in rats. Furthermore, Lima et al.34

found that genipin treatment of chondrocyte-seeded agarose hydrogels was actu-
ally protective against cytokine degradation, and the use of genipin as a culture
supplement had no effect on cell viability.

Although the results of this study are promising, future work must be per-
formed to better elucidate the effects of these crosslinking agents. As this study
served as a preliminary step to determine the feasibility of this approach in a scaf-
foldless system, future studies should be performed to assess the viability of the
constructs following treatment with continued construct culture after crosslinking.
Additionally, it would be exciting to examine if application of this treatment at
regular time intervals would continually enhance the mechanical properties with-
out compromising cell survival and tissue synthesis. In addition, the actual colla-
gen crosslinks should be examined and quantified in future studies. Additionally,
although only ribose and methylglyoxal were found to improve tissue biomechanical
properties, these crosslinking agents should be examined at multiple higher concen-
trations and longer application times to further assess the feasibility of their use in
future cartilage tissue engineering studies. Finally, the effects of these treatments
need to be assessed in an in vivo model to assess the potential toxicity of each
treatment.

In light of this, our study served an important role in assessing the feasibility
of using exogenous crosslinking agents to improve the biomechanical properties of
engineered cartilage constructs without the use of a scaffold, and provided guidance
on which treatments to pursue for use in future studies. The results of this study
are exciting, as they demonstrate the ability to significantly increase the tensile
properties of self-assembled articular cartilage constructs after a short incubation
period, without the need to enhance the biochemical properties of the tissue.
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